Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(12): e0278335, 2022.
Article in English | MEDLINE | ID: covidwho-2140701

ABSTRACT

BACKGROUND: COVID-19 has resulted in over 1 million deaths in the U.S. as of June 2022, with continued surges after vaccine availability. Information on related attitudes and behaviors are needed to inform public health strategies. We aimed to estimate the prevalence of COVID-19, risk factors of infection, and related attitudes and behaviors in a racially, ethnically, and socioeconomically diverse urban population. METHODS: The DFW COVID-19 Prevalence Study Protocol 1 was conducted from July 2020 to March 2021 on a randomly selected sample of adults aged 18-89 years, living in Dallas or Tarrant Counties, Texas. Participants were asked to complete a 15-minute questionnaire and COVID-19 PCR and antibody testing. COVID-19 prevalence estimates were calculated with survey-weighted data. RESULTS: Of 2969 adults who completed the questionnaire (7.4% weighted response), 1772 (53.9% weighted) completed COVID-19 testing. Overall, 11.5% of adults had evidence of COVID-19 infection, with a higher prevalence among Hispanic and non-Hispanic Black persons, essential workers, those in low-income neighborhoods, and those with lower education attainment compared to their counterparts. We observed differences in attitudes and behaviors by race and ethnicity, with non-Hispanic White persons being less likely to believe in the importance of mask wearing, and racial and ethnic minorities more likely to attend social gatherings. CONCLUSION: Over 10% of an urban population was infected with COVID-19 early during the pandemic. Differences in attitudes and behaviors likely contribute to sociodemographic disparities in COVID-19 prevalence.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19 Testing , Cross-Sectional Studies , Pandemics , Urban Population
2.
J Clin Microbiol ; 59(7): e0038821, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1276887

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic continues to impose a significant burden on global health infrastructure. While identification and containment of new cases remain important, laboratories must now pivot and consider an assessment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in the setting of the recent availability of multiple COVID-19 vaccines. Here, we have utilized the latest Abbott Alinity semiquantitative IgM and quantitative IgG spike protein (SP) serology assays (IgMSP and IgGSP) in combination with Abbott Alinity IgG nucleocapsid (NC) antibody test (IgGNC) to assess antibody responses in a cohort of 1,236 unique participants comprised of naive, SARS-CoV-2-infected, and vaccinated (including both naive and recovered) individuals. The IgMSP and IgGSP assays were highly specific (100%) with no cross-reactivity to archived samples collected prior to the emergence of SARS-CoV-2, including those from individuals with seasonal coronavirus infections. Clinical sensitivity was 96% after 15 days for both IgMSP and IgGSP assays individually. When considered together, the sensitivity was 100%. A combination of NC- and SP-specific serologic assays clearly differentiated naive, SARS-CoV-2-infected, and vaccine-related immune responses. Vaccination resulted in a significant increase in IgGSP and IgMSP values, with a major rise in IgGSP following the booster (second) dose in the naive group. In contrast, SARS-CoV-2-recovered individuals had several-fold higher IgGSP responses than naive following the primary dose, with a comparatively dampened response following the booster. This work illustrates the strong clinical performance of these new serological assays and their utility in evaluating and distinguishing serological responses to infection and vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunoglobulin G , Immunoglobulin M , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL